ru

Quantum supercrystals

The study of quantum supercrystals made of periodically arranged nanoparticles (semiconductor quantum dots, plasmonic nanoparticles, graphene flakes etc) is essential for the advancement of emerging nanophotonics technologies. By combining the strong spatial confinement of elementary excitations inside quantum dots with plasmon near-field enhancement and exceptional design flexibility, quantum supercrystals provide broad opportunities for engineering desired optical responses and developing superior light manipulation techniques on the nanoscale.

Refereed Journal Articles

[3] A. S. Baimuratov, Yu. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, Chiral quantum supercrystals with total dissymmetry of optical response, Scientific Reports 6, 23321 (2016).

[2] A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov, Engineering band structure in nanoscale quantum-dot supercrystals, Optics Letters 38 (13), 2259–2261 (2013).

[1] A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, Quantum-dot supercrystals for future nanophotonics, Scientific Reports 3, 873 (2013).

Conference Proceedings

[3] A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, Excitons in two-dimensional quantum-dot superlattices, Abstract book of Psi-k 2015 Conference, pp. 743–744 [September 6–10, 2015, San Sebastian, Spain].

[2] V. K. Turkov, S. Yu. Kruchinin, I. D. Rukhlenko, A. S. Baimuratov, M.Yu. Leonov, Yu. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, A theory of low-temperature stationary photoluminescence of a quantum-dot molecule, NANOCON 2014, 6th International Conference - 2015, pp. 146-151 [November 5th – 7th 2014, Brno, Czech Republic, EU].

[1] A. S. Baimuratov, V. K. Turkov, I. D. Rukhlenko, A. V. Baranov, and A. V. Fedorov, Nanoscale quantum-dot supercrystals, Proc. SPIE 8807, Nanophotonic Materials X, 88070Q [25-29 August 2013, San Diego, California, United States].